Bending with or without axial force
RESULT
Design bending | Bending at failure | Requirement |
Md (KN.m) | Mu (KN.m) | |Md| ≤ |Mu| |
250 | 313.8 | OK |
Design axial force | Axial force at failure | Requirement |
Nd (KN) | Nu (KN) | |Nd| ≤ |Nu| |
10 | 12.55 | OK |
DETAILS OF CALCULATION
Notation and methodology according to clause 6.1 of EC2
Internal forces at failure are the point of interaction diagram axial load - bending which Mu/Nu value is equal to Md/Nd
Range check: 3
d · εcu/(εcu+εud) < x(cm)= 4.59 ≤ xlim
d · εcu/(εcu+εud)= 56 · 0.00288/(0.00288+0.045) = 3.4 cm
xlim = εcu·d / (εcu+fyd/Es) = 0.00288·56 / (0.00288+434.78/200000) = 31.9 cm
Nu (Axial force at failure) = 12.55 KN
Nu(x) = η·fcd·λ·x·b + As2·σs2 - As1·σs1
Nu(N) = 0.95·40·0.78·45.87·400 + 628·73.76 - 1257·456.71
Mu (Bending at failure) = 313.8 KN·m
Mu(x) = η·fcd·λ·x·b·(h/2-λ·x/2) + As2·σs2·(h/2-d′) - As1·σs1·(h/2-d)
Mu(N·m) = 0.95·40·0.78·45.87·400·(0.6/2-0.78·0.0459/2) + 628·73.76·(0.6/2-0.04) - 1257·456.71·(0.6/2-0.56)
where:
- For 50 < fck = 60 ≤ 90 MPa
η = 1.0 - (60-50)/200 = 0.95
λ = 0.8 - (60-50)/400 = 0.78
εc3 = 1,75 + 0,55[(60 - 50)/40] = 1.89(0/00)
εcu = 2.6 + 35[(90 - 60)/100]4 = 2.88(0/00) - For class of steel B:
k= 1.08; εuk = 0.05; εud = 0.9 · εuk = 0.045 - x (depth of the neutral axis) = 4.587 cm (from the upper edge)
Obtained by iteration in the nonlinear system of equations - σs2 = Es · εs2 = 200000· 0.00037 = 73.76 MPa
εs2 = εcu·(x-d′)/x = 0.00288·(4.587-4)/4.587 = 0.00037
σs1 = fyd + p·(εs1-fyd/Es) = 434.78 + 727.27·(0.03232-434.78/200000) = 456.71 MPa
εs1 = εcu·(d-x)/x = 0.00288·(56-4.587)/4.587 = 0.03232
p = (k·fyd-fyd)/(εuk-fyd/Es) = (1.08·434.78-434.78)/(0.05-434.78/200000) = 727.27 MPa - d (effective depth) = h – c - Φmax,s1/2 = 60 – 3 – 2/2 = 56 cm
- d′ = c + Φmax,s2/2 = 3 + 2/2 = 4 cm
- fcd = αcc · fck / γc = 1 · 60 / 1.5 = 40 N/mm2
- fyd = fyk / γs = 500 /1.15 = 434.78 N/mm2