Shear ultimate limit state
Design shear force | Design shear strength | Requirement | |
VEd (KN) | VRd,max (KN) | VRd (KN) | VEd < VRd and VRd,max |
200 | 305.01 | 239.77 | OK |
Notation and methodology according to clause 6.2 of EC2
VRd,max (Resistance crushing of compression struts)= 305.01 kN
VRd,max = αcw · bw · z · v1 · fcd·(cotθ + cotα) / (1+cot2θ)
VRd,max = 1·300·328·0.54·16.67·(2.5+0) / (1+2.52) = 305007 N
where:
- fcd = αcc · fck / γc = 1 · 25 / 1.5 = 16.67 MPa
- αcw = 1 · 1 = 1
Case: non-prestressed structure or non-axial force - z = 0.9 · d = 32.76 cm
d (effective depth) = h – c - Φmax/2 = 40 – 3 – 1.2/2 = 36.4 cm - v1 = 1·0.6·(1-25/250) = 0.54
- cotθ = 2.5 (1 ≤ cotθ ≤ 2.5)
(it get the maximum value of VRd,s that satisfies VEd ≤ VRd,max)
VRd (Tensile strength in the web) = 239.77 KN
VRd = max (VRd,c ; VRd,s), in which:
VRd,c (Resistance without shear reinforcement)= 53.56 kN
VRd,c = [CRd,ck(100·ρ1·fck)1/3 + k1·σcp] bw·d
VRd,c = [0.12·1.741·(100·0.0052·25)1/3 + 0.15·0]·300·364 = 53562 N
with a minimum of
VRd,c (min) = (vmin + k1·σcp) bw·d
VRd,c (min) = (0.402 + 0.15·0)·300·364 = 43909 N
where:- CRd,c = 0.18/1.5 = 0.12
- k = min [1+(200/d)1/2 , 2] = 1.741
1+(200/d)1/2 = 1+(200/364)1/2 = 1.741 - ρ1 = min (As1/(b∙d) , 0.02) = 0.0052
As1/(b∙d) = 5.65/(100∙36.4) = 0.0052 - σcp = min [NEd/(b·h) ; 0.2·fcd] = min (0 ; 3.33) = 0 MPa
- vmin = 0.035·k3/2·fck1/2 = 0.035·1.7413/2·251/2 = 0.402 MPa
VRd,s (Resistance with shear reinforcement)= 239.77 kN
VRd,s = Asw/s · z · fywd · (cotθ+cotα)·sinα
VRd,s = 101/15 · 32.76 · 434.78 · (2.5+0)·1 = 239765 N
with fywd = fyk / γa = 500 /1.15 = 434.78 N/mm2